Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping
Ramin Raeesi and
Konstantinos G. Zografos
European Journal of Operational Research, 2022, vol. 301, issue 1, 82-109
Abstract:
A primary challenge in goods distribution using Electric Commercial Vehicles (ECVs) pertains to tackling their limited driving range. This paper proposes a multi-faceted approach towards increasing the driving range of ECVs by coordinating the options of: (i) intra-route recharging at an intermediate Recharging Station (RS), with (ii) synchronised en-route battery swapping services performed by Battery Swapping Vans (BSVs) at a pre-planned rendezvous time and space. We introduce and solve a variant corresponding to an Electric Vehicle Routing Problem with Time Windows, RSs and Synchronised Mobile Battery Swapping (EVRPTW-RS-SMBS). In the proposed model, route planning is carried out synchronously for two interdependent fleets, i.e., ECVs and BSVs, which work in tandem to complete the delivery tasks. To address methodological complications arising from the simultaneous consideration of intra-route recharging at RSs and the synchronised battery swapping on-the-fly, the paper develops a pre-optimisation procedure based on a Non-Dominated Path Identification (NDPI) algorithm that is used in deriving a significantly strengthened path-based formulation of the problem, and an efficient dynamic programming based heuristic algorithm. To gain practical insights on the economic and environmental added value and viability of the proposed logistics model, we compare different scenarios for goods distribution using ECVs in urban and regional levels in London and Southeast England, respectively. A set of numerical experiments are further performed to demonstrate the efficiency of the proposed algorithms. Our results indicate significant cost and emissions savings and an opportunity for going beyond last mile local deliveries using ECVs with the proposed logistics model.
Keywords: Routing; Electric vehicles; Recharging; Battery swapping; Scheduling and synchronisation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721008122
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:301:y:2022:i:1:p:82-109
DOI: 10.1016/j.ejor.2021.09.037
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().