Motivations and analysis of the capacitated lot-sizing problem with setup times and minimum and maximum ending inventories
Mehdi Charles,
Stéphane Dauzère-Pérès,
Safia Kedad-Sidhoum and
Issam Mazhoud
European Journal of Operational Research, 2022, vol. 302, issue 1, 203-220
Abstract:
This paper first analyzes the negative impact of the end-of-horizon effect when solving the capacitated multi-item lot-sizing problem with setup costs and times on a rolling horizon. Maximum ending inventories for items and a global minimum ending inventory are considered to define a new optimization problem whose optimal solutions are much less impacted by the end-of-horizon effect. Then, a generation scheme is proposed to create new instances with initial inventories and ending inventories. This scheme relies on the analysis of the cyclical production planning problem to derive relevant parameters. Computational experiments are carried out to compare the solutions obtained for original instances of the literature and for the new instances, and to analyze the relevance of the new instances on a rolling horizon.
Keywords: Manufacturing; Multi-item lot sizing; Setup times; Ending inventories; Rolling horizon (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721010444
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:302:y:2022:i:1:p:203-220
DOI: 10.1016/j.ejor.2021.12.017
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().