New integer optimization models and an approximate dynamic programming algorithm for the lot-sizing and scheduling problem with sequence-dependent setups
Younsoo Lee and
Kyungsik Lee
European Journal of Operational Research, 2022, vol. 302, issue 1, 230-243
Abstract:
In this paper, we propose new integer optimization models for the lot-sizing and scheduling problem with sequence-dependent setups, based on the general lot-sizing and scheduling problem. To incorporate setup crossover and carryover, we first propose a standard model that straightforwardly adapts a formulation technique from the literature. Then, as the main contribution, we propose a novel optimization model that incorporates the notion of time flow. We derive a family of valid inequalities with which to compare the tightness of the models’ linear programming relaxations. In addition, we provide an approximate dynamic programming algorithm that estimates the value of a state using its lower and upper bounds. Then, we conduct computational experiments to demonstrate the competitiveness of the proposed models and the solution algorithm. The test results show that the newly proposed time-flow model has considerable advantages compared with the standard model in terms of tightness and solvability. The proposed algorithm also shows computational benefits over the standard mixed integer programming solver.
Keywords: Production; Lot-sizing and scheduling problem; Integer optimization model; Sequence-dependent setup; Approximate dynamic programming algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721010882
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:302:y:2022:i:1:p:230-243
DOI: 10.1016/j.ejor.2021.12.032
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().