Reducing transaction costs for interest rate risk hedging with stochastic programming
Jörgen Blomvall and
Johan Hagenbjörk
European Journal of Operational Research, 2022, vol. 302, issue 3, 1282-1293
Abstract:
Traditional methods for hedging interest rate risk do not take transaction costs into account as they aim to eliminate all risk. We propose a two-stage stochastic programming model for hedging interest rate risk where transaction costs are weighed against portfolio variance. High-quality measurements of term structures enable us to extract the systematic risk factors and make precise estimates of the perceived transaction costs. The hedging cost is weighed against the reduction in portfolio variance by using an adjustable hedging parameter. The hedging procedure is simulated on a daily basis in a realistic setting over an out-of-sample period from 2002 to 2018, and the results are compared to traditional hedging methods through detailed performance attribution. Using second-order stochastic dominance, we show that the proposed method is preferred by all risk-averse investors.
Keywords: Finance; OR in banking; Risk management; Stochastic programming (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172200090X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:302:y:2022:i:3:p:1282-1293
DOI: 10.1016/j.ejor.2022.02.004
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().