Convex non-parametric least squares, causal structures and productivity
Mike G. Tsionas
European Journal of Operational Research, 2022, vol. 303, issue 1, 370-387
Abstract:
In this paper we consider Convex Nonparametric Least Squares (CNLS) when productivity is introduced. In modern treatments of production function estimation, the issue has gained great importance as when productivity shocks are known to the producers, input choices are endogenous and estimators of production function parameters become inconsistent. As CNLS has excellent properties in terms of approximating arbitrary monotone concave functions, we use it, along with flexible formulations of productivity, to estimate inefficiency and productivity growth in Chilean manufacturing plants. Inefficiency and productivity dynamics are explored in some detail along with marginal effects of contextual variables on productivity growth, inputs, and output. Additionally, we examine the causal structure between inefficiency and productivity as well as model validity based on a causal deconfounding approach. Unlike the Cobb-Douglas and translog production functions, the CNLS system is found to admit a causal interpretation.
Keywords: Productivity and efficiency; Production functions; Convex non-parametric least squares; Causal models; Deconfounding (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722001229
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:303:y:2022:i:1:p:370-387
DOI: 10.1016/j.ejor.2022.02.020
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().