Integrated and hierarchical systems for coordinating order acceptance and release planning
Foad Ghadimi,
Tarik Aouam,
Stefan Haeussler and
Reha Uzsoy
European Journal of Operational Research, 2022, vol. 303, issue 3, 1277-1289
Abstract:
We present hierarchical models for coordinating order acceptance and release planning under load-dependent lead times. Our integrated models use detailed information at the item level, while the hierarchical models decompose the decision process into order acceptance and order release subproblems that are solved sequentially. Demand uncertainty is addressed by implementing the proposed models in a rolling horizon framework, and by including chance-constraints that include safety stock to address demand uncertainty. Simulation experiments show that the hierarchical models can capture almost all of the benefit of coordinated order acceptance and release and require less computational effort. The chance-constrained models that build safety stocks are effective in the face of uncertain order quantities.
Keywords: Production; Order acceptance; Load-dependent lead times; Rolling horizon; Service level (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722002867
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:303:y:2022:i:3:p:1277-1289
DOI: 10.1016/j.ejor.2022.03.057
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().