Testing facility location and dynamic capacity planning for pandemics with demand uncertainty
Kanglin Liu,
Changchun Liu,
Xi Xiang and
Zhili Tian
European Journal of Operational Research, 2023, vol. 304, issue 1, 150-168
Abstract:
The outbreak of coronavirus disease 2019 (COVID-19) has seriously affected the whole world, and epidemic research has attracted increasing amounts of scholarly attention. Critical facilities such as warehouses to store emergency supplies and testing or vaccination sites could help to control the spread of COVID-19. This paper focuses on how to locate the testing facilities to satisfy the varying demand, i.e., test kits, caused by pandemics. We propose a two-phase optimization framework to locate facilities and adjust capacity during large-scale emergencies. During the first phase, the initial prepositioning strategies are determined to meet predetermined fill-rate requirements using the sample average approximation formulation. We develop an online convex optimization-based Lagrangian relaxation approach to solve the problem. Specifically, to overcome the difficulty that all scenarios should be addressed simultaneously in each iteration, we adopt an online gradient descent algorithm, in which a near-optimal approximation for a given Lagrangian dual multiplier is constructed. During the second phase, the capacity to deal with varying demand is adjusted dynamically. To overcome the inaccuracy of long-term prediction, we design a dynamic allocation policy and adaptive dynamic allocation policy to adjust the policy to meet the varying demand with only one day’s prediction. A comprehensive case study with the threat of COVID-19 is conducted. Numerical results have verified that the proposed two-phase framework is effective in meeting the varying demand caused by pandemics. Specifically, our adaptive policy can achieve a solution with only a 3.3% gap from the optimal solution with perfect information.
Keywords: OR In disaster relief; Dynamic facility location; Capacity planning; Online convex optimization; Gradient descent (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221721009796
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:304:y:2023:i:1:p:150-168
DOI: 10.1016/j.ejor.2021.11.028
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().