Stochastic optimization for vaccine and testing kit allocation for the COVID-19 pandemic
Lawrence Thul and
Warren Powell
European Journal of Operational Research, 2023, vol. 304, issue 1, 325-338
Abstract:
We present a formal mathematical modeling framework for a multi-agent sequential decision problem during an epidemic. The problem is formulated as a collaboration between a vaccination agent and learning agent to allocate stockpiles of vaccines and tests to a set of zones under various types of uncertainty. The model is able to capture passive information processes and maintain beliefs over the uncertain state of the world. We designed a parameterized direct lookahead approximation which is robust and scalable under different scenarios, resource scarcity, and beliefs about the environment. We design a test allocation policy designed to capture the value of information and demonstrate that it outperforms other learning policies when there is an extreme shortage of resources (information is scarce). We simulate the model with two scenarios including a resource allocation problem to each state in the United States and another for the nursing homes in Nevada. The US example demonstrates the scalability of the model and the nursing home example demonstrates the robustness under extreme resource shortages.
Keywords: Decision processes; Uncertainty modeling; Reinforcement learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172100953X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:304:y:2023:i:1:p:325-338
DOI: 10.1016/j.ejor.2021.11.007
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().