Estimating causal effects with optimization-based methods: A review and empirical comparison
Martin Cousineau,
Vedat Verter,
Susan A. Murphy and
Joelle Pineau
European Journal of Operational Research, 2023, vol. 304, issue 2, 367-380
Abstract:
In the absence of randomized controlled and natural experiments, it is necessary to balance the distributions of (observable) covariates of the treated and control groups in order to obtain an unbiased estimate of a causal effect of interest; otherwise, a different effect size may be estimated, and incorrect recommendations may be given. To achieve this balance, there exist a wide variety of methods. In particular, several methods based on optimization models have been recently proposed in the causal inference literature. While these optimization-based methods empirically showed an improvement over a limited number of other causal inference methods in their relative ability to balance the distributions of covariates and to estimate causal effects, they have not been thoroughly compared to each other and to other noteworthy causal inference methods. In addition, we believe that there exist several unaddressed opportunities that operational researchers could contribute with their advanced knowledge of optimization, for the benefits of the applied researchers that use causal inference tools. In this review paper, we present an overview of the causal inference literature and describe in more detail the optimization-based causal inference methods, provide a comparative analysis of the prevailing optimization-based methods, and discuss opportunities for new methods.
Keywords: Analytics; Data science; Causal inference; Confounding; Constrained optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722000844
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:304:y:2023:i:2:p:367-380
DOI: 10.1016/j.ejor.2022.01.046
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().