Dynamic optimization with side information
Dimitris Bertsimas,
Christopher McCord and
Bradley Sturt
European Journal of Operational Research, 2023, vol. 304, issue 2, 634-651
Abstract:
We develop a tractable and flexible data-driven approach for incorporating side information into multi-stage stochastic programming. The proposed framework uses predictive machine learning methods (such as k-nearest neighbors, kernel regression, and random forests) to weight the relative importance of various data-driven uncertainty sets in a robust optimization formulation. Through a novel measure concentration result for a class of supervised machine learning methods, we prove that the proposed approach is asymptotically optimal for multi-period stochastic programming with side information. We also describe a general-purpose approximation for these optimization problems, based on overlapping linear decision rules, which is computationally tractable and produces high-quality solutions for dynamic problems with many stages. Across a variety of multi-stage and single-stage examples in inventory management, finance, and shipment planning, our method achieves improvements of up to 15% over alternatives and requires less than one minute of computation time on problems with twelve stages.
Keywords: Stochastic programming; Distributionally robust optimization; Machine learning; Dynamic optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722002545
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:304:y:2023:i:2:p:634-651
DOI: 10.1016/j.ejor.2022.03.030
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().