EconPapers    
Economics at your fingertips  
 

Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull

Miriam Esteve, Juan Aparicio, Jesus J. Rodriguez-Sala and Joe Zhu

European Journal of Operational Research, 2023, vol. 304, issue 2, 729-744

Abstract: In the technical efficiency evaluation area, it may happen that many observations obtain a similar relative technical efficiency status, making it difficult to discriminate between them. The determination of super-efficiency has been a way of solving this problem by providing a method to differentiate between the performance of observations. Despite the existence of some approaches dealing with the notion of super-efficiency in the literature, there have been few attempts to address this problem from the standpoint of machine learning techniques. In this paper, we fill this gap by adapting Random Forest to determine super-efficiency in the context of the Free Disposal Hull (FDH) technique. The new super-efficiency approach is robust to resampling on inputs and data. Additionally, we show how the new approach could be a possible solution for dealing with the curse of dimensionality problem; typically associated with FDH. Furthermore, exploiting the adaptation of Random Forest, a new method for assessing the importance of input variables is introduced. Finally, the advantages of the proposed approach are illustrated through a real example.

Keywords: Data envelopment analysis; Free disposal hull; Super-efficiency; Machine Learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722003381
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:304:y:2023:i:2:p:729-744

DOI: 10.1016/j.ejor.2022.04.024

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:304:y:2023:i:2:p:729-744