A unified theory for bivariate scores in possessive ball-sports: The case of handball
Aaditya Singh,
Phil Scarf and
Rose Baker
European Journal of Operational Research, 2023, vol. 304, issue 3, 1099-1112
Abstract:
We present a unified theory that posits three fundamental models as necessary and sufficient for modelling the bivariate scores in possessive ball-sports. These models provide the basis for perhaps more complicated models that can be used for prediction, experimentation, and explanation. First is the Poisson-match, for when goals are rare, or when goals are frequent but the restart after a goal is contested. Second is the binomial-match, for when goals are frequent and the restart uses the alternating rule. Third is the Markov-match, for when the restart uses the catch-up rule. We describe in detail the new model amongst these, the Markov-match, which is complementary to rather than competing with the binomial-match. The Markov-match is a bivariate generalisation of the Markov-binomial distribution. Its structure (catch-up restart) induces a larger correlation between the scores of competitors than does the binomial-match (alternating restart) but slightly more tied outcomes. The Markov-match is illustrated using handball, a high-scoring sport. In our analysis the time-varying strengths of 45 international handball teams are estimated. This poses some mathematical and computational problems, and in particular we describe how to shrink the strength-estimates of teams that play fewer games in tournaments because they are weaker. For the handball results, the Markov-match gives a better fit to data than the Poisson-match.
Keywords: OR in sports; Prediction; Bivariate discrete distributions; Selection bias; Shrinkage (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172200368X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:304:y:2023:i:3:p:1099-1112
DOI: 10.1016/j.ejor.2022.05.010
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().