Hidden markov models in reliability and maintenance
María Luz Gámiz,
Nikolaos Limnios and
María del Carmen Segovia-García
European Journal of Operational Research, 2023, vol. 304, issue 3, 1242-1255
Abstract:
Although the hidden Markov models (HMM) are very popular in many applied areas their use in reliability engineering is limited. Problems such as the selection of the HMM model by choosing the appropriate number of states, or problems of prediction of failures have not been widely covered in the literature. This paper is concerned with the use of HMMs where the state of the system is not directly observable and instead certain indicators of the true situation are provided via a control system. A hidden model can provide key information about the system dependability such as the failed component of the system, the reliability of the system and related measures. A maximum-likelihood estimator of the system reliability is obtained and its asymptotic properties are studied. Finally, the maintenance of the system is considered in this context and new preventive maintenance strategies are defined and their efficiency is measured in terms of expected cost. To prove the finite sample performance of the methodology, an extensive simulation study is developed.
Keywords: Reliability; Hidden Markov chain; Maintenance; Asymptotic properties; EM-Algorithm (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722003642
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:304:y:2023:i:3:p:1242-1255
DOI: 10.1016/j.ejor.2022.05.006
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().