Iterated local search for the placement of wildland fire suppression resources
André Bergsten Mendes and
Filipe Pereira e Alvelos
European Journal of Operational Research, 2023, vol. 304, issue 3, 887-900
Abstract:
We consider the problem of, given a landscape represented by a gridded network and a fire ignition location, deciding where to locate the available fire suppression resources to minimise the burned area and the number of deployed resources as a secondary objective. We assume an estimate of the fire propagation times between adjacent nodes and use the minimum travel time principle to model the fire propagation at a landscape-level. The effect of locating a resource in a node is that it becomes protected and the fire propagation to its unburned adjacent nodes is delayed. Therefore, the problem is to identify the most promising nodes to locate the resources, which is solved by a novel iterated local search (ILS) metaheuristic. A mixed integer programming (MIP) model from the literature is used to validate the proposed method in 32 grid networks with sizes 6x6, 10x10, 20x20 and 30x30, with two different number of fire suppression resources (64 problems). Our ILS produced optimal solutions in 40 cases out of 41 known optimal lower bounds. The proposed method’s effectiveness is also due to its short computing times and small coefficients of variation of the objective function values.
Keywords: Metaheuristics; Wildfires; Fire suppression; Mixed integer programming; Iterated local search (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722003502
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:304:y:2023:i:3:p:887-900
DOI: 10.1016/j.ejor.2022.04.037
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().