EconPapers    
Economics at your fingertips  
 

Variable selection in convex quantile regression: L1-norm or L0-norm regularization?

Sheng Dai

European Journal of Operational Research, 2023, vol. 305, issue 1, 338-355

Abstract: The curse of dimensionality is a recognized challenge in nonparametric estimation. This paper develops a new L0-norm regularization approach to the convex quantile and expectile regressions for subset selection. We show how to use mixed-integer programming to solve the proposed L0-norm regularization approach in practice and build a link to the commonly used L1-norm regularization approach. A Monte Carlo study is performed to compare the finite sample performances of the proposed L0-penalized convex quantile and expectile regression approaches with the L1-norm regularization approaches. The proposed approach is further applied to benchmark the sustainable development performance of the OECD countries and empirically analyze the accuracy in the dimensionality reduction of variables. The results from the simulation and application illustrate that the proposed L0-norm regularization approach can more effectively address the curse of dimensionality than the L1-norm regularization approach in multidimensional spaces.

Keywords: Data envelopment analysis; Variable selection; Convex quantile regression; Regularization; SDG evaluation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722004313
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:305:y:2023:i:1:p:338-355

DOI: 10.1016/j.ejor.2022.05.041

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:ejores:v:305:y:2023:i:1:p:338-355