EconPapers    
Economics at your fingertips  
 

The continuous maximum capacity path interdiction problem

Javad Tayyebi, Ankan Mitra and Jorge A. Sefair

European Journal of Operational Research, 2023, vol. 305, issue 1, 38-52

Abstract: This paper studies the continuous maximum capacity path interdiction problem, where two players, user and interdictor, compete in a capacitated network. The user wants to send the maximum possible amount of flow through a path, whose capacity is given by the minimum capacity among its arcs. The budget-constrained interdictor decreases arc capacities by any continuous amount to reduce the quality of the user’s chosen path. We present an efficient algorithm based on a discrete version of the Newton’s method, which helps us solve the problem in polynomial time. We also prove that the problem can be transformed into a zero-sum game, which has always a pure Nash equilibrium point. We demonstrate the performance of our algorithm over a set of randomly generated networks.

Keywords: Networks; Maximum capacity path; Network interdiction; Stackelberg games; Newton’s method; Interdiction games (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722004027
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:305:y:2023:i:1:p:38-52

DOI: 10.1016/j.ejor.2022.05.028

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:305:y:2023:i:1:p:38-52