Multistage stochastic decision problems: Approximation by recursive structures and ambiguity modeling
Georg Ch. Pflug
European Journal of Operational Research, 2023, vol. 306, issue 3, 1027-1039
Abstract:
Stochastic multistage decision problems appear in many - if not all - application areas of Operations Research. While to define such problems is easy, to solve them is quite difficult, since they are of infinite dimension. Numerical solution can only be found by solving an approximate, easier problem. In this paper, we show good approximations can be found, where we emphasize the recursive structure of the involved algorithms and data structures.
Keywords: Stochastic programming; Scenario tree generation; Recursive algorithms; Model error; Distributionally robust solutions (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722002909
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:306:y:2023:i:3:p:1027-1039
DOI: 10.1016/j.ejor.2022.04.002
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().