EconPapers    
Economics at your fingertips  
 

CliSAT: A new exact algorithm for hard maximum clique problems

Pablo San Segundo, Fabio Furini, David Álvarez and Panos M. Pardalos

European Journal of Operational Research, 2023, vol. 307, issue 3, 1008-1025

Abstract: Given a graph, the maximum clique problem (MCP) asks for determining a complete subgraph with the largest possible number of vertices. We propose a new exact algorithm, called CliSAT, to solve the MCP to proven optimality. This problem is of fundamental importance in graph theory and combinatorial optimization due to its practical relevance for a wide range of applications. The newly developed exact approach is a combinatorial branch-and-bound algorithm that exploits the state-of-the-art branching scheme enhanced by two new bounding techniques with the goal of reducing the branching tree. The first one is based on graph colouring procedures and partial maximum satisfiability problems arising in the branching scheme. The second one is a filtering phase based on constraint programming and domain propagation techniques. CliSAT is designed for structured MCP instances which are computationally difficult to solve since they are dense and contain many interconnected large cliques. Extensive experiments on hard benchmark instances, as well as new hard instances arising from different applications, show that CliSAT outperforms the state-of-the-art MCP algorithms, in some cases by several orders of magnitude.

Keywords: Combinatorial optimization; Exact algorithm; Branch-and-bound algorithm; Maximum clique problem (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722008165
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:307:y:2023:i:3:p:1008-1025

DOI: 10.1016/j.ejor.2022.10.028

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:307:y:2023:i:3:p:1008-1025