EconPapers    
Economics at your fingertips  
 

Dendrograms, minimum spanning trees and feature selection

Martine Labbé, Mercedes Landete and Marina Leal

European Journal of Operational Research, 2023, vol. 308, issue 2, 555-567

Abstract: Feature selection is a fundamental process to avoid overfitting and to reduce the size of databases without significant loss of information that applies to hierarchical clustering. Dendrograms are graphical representations of hierarchical clustering algorithms that for single linkage clustering can be interpreted as minimum spanning trees in the complete network defined by the database. In this work, we introduce the problem that determines jointly a set of features and a dendrogram, according to the single linkage method. We propose different formulations that include the minimum spanning tree problem constraints as well as the feature selection constraints. Different bounds on the objective function are studied. For one of the models, several families of valid inequalities are proposed and the problem of separating them is studied. For another formulation, a decomposition algorithm is designed. In an extensive computational study, the effectiveness of the different models is discussed, the model with valid inequalities is compared with the decomposition algorithm. The computational results also illustrate that the integration of feature selection to the optimization model allows to keep a satisfactory percentage of information.

Keywords: Combinatorial optimization; Feature selection; Hierarchical clustering; Single linkage; Minimum spanning tree (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722008906
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:308:y:2023:i:2:p:555-567

DOI: 10.1016/j.ejor.2022.11.031

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:308:y:2023:i:2:p:555-567