Optimal reconciliation with immutable forecasts
Bohan Zhang,
Yanfei Kang,
Anastasios Panagiotelis and
Feng Li ()
European Journal of Operational Research, 2023, vol. 308, issue 2, 650-660
Abstract:
The practical importance of coherent forecasts in hierarchical forecasting has inspired many studies on forecast reconciliation. Under this approach, base forecasts are produced for every series in the hierarchy and are subsequently adjusted to be coherent in a second reconciliation step. Reconciliation methods have been shown to improve forecast accuracy but will generally adjust the base forecast of every series. However, in an operational context, it is sometimes necessary or beneficial to keep forecasts of some variables unchanged after forecast reconciliation. In this paper, we formulate a reconciliation methodology that keeps forecasts of a pre-specified subset of variables unchanged or “immutable”. In contrast to existing approaches, these immutable forecasts need not all come from the same level of a hierarchy, and our method can also be applied to grouped hierarchies. We prove that our approach preserves unbiasedness in base forecasts. Our method can also account for correlations between base forecasting errors and ensure the non-negativity of forecasts. We also perform empirical experiments, including an application to a large-scale online retailer’s sales, to assess our proposed methodology’s impacts.
Keywords: Forecasting; Hierarchical time series; Constrained optimization; Unbiasedness; Online retail (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172200892X
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Optimal reconciliation with immutable forecasts (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:308:y:2023:i:2:p:650-660
DOI: 10.1016/j.ejor.2022.11.035
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().