EconPapers    
Economics at your fingertips  
 

Analyzing the accuracy of variable returns to scale data envelopment analysis models

Mansour Zarrin and Jens O. Brunner

European Journal of Operational Research, 2023, vol. 308, issue 3, 1286-1301

Abstract: The data envelopment analysis (DEA) model is extensively used to estimate efficiency, but no study has determined the DEA model that delivers the most precise estimates. To address this issue, we advance the Monte Carlo simulation-based data generation process proposed by Kohl and Brunner (2020). The developed process generates an artificial dataset using the Translog production function (instead of the commonly used Cobb Douglas) to construct well-behaved scenarios under variable returns to scale (VRS). Using different VRS DEA models, we compute DEA efficiency scores with artificially generated decision-making units (DMUs). We employ five performance indicators followed by a benchmark value and ranking as well as statistical hypothesis tests to evaluate the quality of the efficiency estimates. The procedure allows us to determine which parameters negatively or positively influence the quality of the DEA estimates. It also enables us to identify which DEA model performs the most efficiently over a wide range of scenarios. In contrast to the widely applied BCC (Banker-Charnes-Cooper) model, we find that the Assurance Region (AR) and Slacks-Based Measurement (SBM) DEA models perform better. Thus, we endorse the use of AR and SBM models for DEA applications under the VRS regime.

Keywords: Data envelopment analysis; Assurance region; Slacks-based measurement; Variable returns to scale; Monte Carlo data generation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722009420
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:308:y:2023:i:3:p:1286-1301

DOI: 10.1016/j.ejor.2022.12.015

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:308:y:2023:i:3:p:1286-1301