EconPapers    
Economics at your fingertips  
 

Constrained optimization for stratified treatment rules in reducing hospital readmission rates of diabetic patients

Haiyan Yu, Ching-Chi Yang and Ping Yu

European Journal of Operational Research, 2023, vol. 308, issue 3, 1355-1364

Abstract: Diabetic patients can receive multiple/different treatments. However, there is no universal solution for all patients, i.e., one prescription can treat some patients, but it may not be effective for others. Therefore, if we can stratify those patients into several sub-classes, the patients in each sub-class can receive the optimal treatment. There are two main challenges: (1) counterfactual inference when a patient can only take one treatment at a time, i.e., a long time is required to collect an adequate amount of patient data for analysis; (2) the confounding effects of covariates on the treatment. To address these challenges, we propose a method entitled constrained optimization for stratified treatment rules (COSTAR). The proposition is to view the realized treatment outcome as observable but the unrealized as missing values. Thus, the problem becomes finding the optimal treatment with missing outcomes and covariate balance constraints. Through the method COSTAR, the experiment results with real-world data suggest that our results perform better than the related methods in reducing the hospital readmission rate within 30 days. Our solution also guarantees the robustness of the estimation of the mean treatment response in each sub-class.

Keywords: Data science; Constrained optimization; Covariate balancing; Missing data; Stratified treatment (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722009687
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:308:y:2023:i:3:p:1355-1364

DOI: 10.1016/j.ejor.2022.12.020

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:308:y:2023:i:3:p:1355-1364