Scalable timing-aware network design via lagrangian decomposition
Cristiana L. Lara,
Jochen Koenemann,
Yisu Nie and
Cid C. de Souza
European Journal of Operational Research, 2023, vol. 309, issue 1, 152-169
Abstract:
This paper addresses instances of the temporal fixed-charge multi-commodity flow (tfMCF) problem that arise in a very large scale dynamic transportation application. We model the tfMCF as a discrete-time Resource Task Network (RTN) with cyclic schedule, and formulate it as a mixed-integer program. These problems are notoriously hard to solve due to their time-expanded nature, and their size renders their direct solution difficult. We exploit synergies between flows of certain commodities in the formulation to devise model condensation techniques that reduce the number of variables and constraints by a factor of 25%–50%. We propose a solution algorithm that includes balanced graph partitioning, Lagrangian decomposition and a linear programming filtering heuristic. Computational results show that the proposed algorithm allows the solution of previously intractable instances, and the primal solution obtained by the heuristic step is within 2% duality gap of the linear relaxation of the original problem.
Keywords: Transportation; Temporal fixed-charge multi-commodity flow; Resource task network; Task scheduling; Lagrangian decomposition (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723000371
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:309:y:2023:i:1:p:152-169
DOI: 10.1016/j.ejor.2023.01.018
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().