Dynamic surgery management under uncertainty
E. Gökalp,
N. Gülpınar and
X.V. Doan
European Journal of Operational Research, 2023, vol. 309, issue 2, 832-844
Abstract:
Real-time surgery management involves a complex and dynamic decision-making process. The duration of surgeries in many cases cannot be known until the surgery has actually been completed. Furthermore, disruptions such as equipment failure or the arrival of a non-elective surgery can occur simultaneously. Thus, the assignment of surgeries needs to be updated, as and when disruptions occur, to minimize their effects. In this paper, we present a stochastic dynamic programming approach to the surgery allocation problem with multiple operating rooms under uncertainty. Given an elective list for the day, the dynamic optimization model minimizes the number of surgeries not carried out by the end of the shift and the total waiting times of patients during the day weighted according to their urgency level. Due to the curse of dimensionality, we apply an approximate dynamic programming algorithm to solve the stochastic dynamic surgery management model. Computational experiments are designed to demonstrate the performance of the proposed algorithm and its applicability to practical settings. The results show that the approximate dynamic programming algorithm provides a good approximation to the optimum policy and leads to some managerial insights.
Keywords: Reactive scheduling; Uncertainty modelling; Surgery management; Approximate dynamic programming (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172200933X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:309:y:2023:i:2:p:832-844
DOI: 10.1016/j.ejor.2022.12.006
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().