EconPapers    
Economics at your fingertips  
 

Partially observable collaborative model for optimizing personalized treatment selection

Jue Gong and Shan Liu

European Journal of Operational Research, 2023, vol. 309, issue 3, 1409-1419

Abstract: Precision medicine that enables personalized treatment decision support has become an increasingly important research topic in chronic disease care. The main challenges in designing a treatment algorithm include modeling individual disease progression dynamics and designing adaptive treatment selection strategy. This study aims to develop an adaptive treatment selection framework tailored to an individual patient’s disease progression pattern and treatment response. We propose a Partially Observable Collaborative Model (POCM) to capture the individual variations in a heterogeneous population and optimize treatment outcomes in three stages. The POCM first infers the disease progression models by subgroup patterns using population data in stage one and then fine-tunes the models for individual patients with a small number of treatment trials in stage two. In stage three, we show how the treatment policies based on the Partially Observable Markov Decision Process (POMDP) can be tailored to individual patients by utilizing the disease models learned from the POCM. Using a simulated population of chronic depression patients, we show that the POCM can more accurately estimate the personal disease progression than the traditional method of solving a hidden Markov model. We also compare the POMDP treatment policies with other heuristic policies and demonstrate that the POCM-based policies give the highest net monetary benefits in majority of parameter settings. To conclude, the POCM method is a promising approach to model the chronic disease progression process and recommend a personalized treatment plan for individual patients in a heterogeneous population.

Keywords: OR in medicine; Partially observable Markov decision process; Medical decision making; Disease progression modeling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723002084
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:309:y:2023:i:3:p:1409-1419

DOI: 10.1016/j.ejor.2023.03.014

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:309:y:2023:i:3:p:1409-1419