Efficient approximation algorithms for scheduling moldable tasks
Xiaohu Wu and
Patrick Loiseau
European Journal of Operational Research, 2023, vol. 310, issue 1, 71-83
Abstract:
Moldable tasks allow schedulers to determine the number of processors assigned to each task, thus enabling efficient use of large-scale parallel processing systems. We consider the problem of scheduling independent moldable tasks on processors and propose a new perspective of the existing speedup models: as the number p of processors assigned to a task increases, the speedup is linear if p is small and becomes sublinear after p exceeds a threshold. Based on this, we propose an efficient approximation algorithm to minimize the makespan. As a by-product, we also propose an approximation algorithm to maximize the sum of values of tasks completed by a deadline; this scheduling objective is considered for moldable tasks for the first time while similar works have been done for other types of parallel tasks.
Keywords: Scheduling; Approximation algorithms; Moldable tasks (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723001923
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:310:y:2023:i:1:p:71-83
DOI: 10.1016/j.ejor.2023.02.044
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().