Robust regression under the general framework of bounded loss functions
Saiji Fu,
Yingjie Tian and
Long Tang
European Journal of Operational Research, 2023, vol. 310, issue 3, 1325-1339
Abstract:
Conventional regression methods often fail when encountering noise. The application of a bounded loss function is an effective means to enhance regressor robustness. However, most bounded loss functions exist in Ramp-style forms, losing some inherent properties of the original function due to hard truncation. Besides, there is currently no unified framework on how to design bounded loss functions. In response to the above two issues, this paper proposes a general framework that can smoothly and adaptively bound any non-negative function. It can not only degenerate to the original function, but also inherit its elegant properties, including symmetry, differentiability and smoothness. Under this framework, a robust regressor called bounded least squares support vector regression (BLSSVR) is proposed to mitigate the effects of noise and outliers by limiting the maximum loss. With appropriate parameters, the bounded least squares loss grows faster than its unbounded form in the initial stage, which facilitates BLSSVR to assign larger weights to non-outlier points. Meanwhile, the Nesterov accelerated gradient (NAG) algorithm is employed to optimize BLSSVR. Extensive experiments on synthetic and real-world datasets profoundly demonstrate the superiority of BLSSVR over benchmark methods.
Keywords: Robustness and sensitivity analysis; Bounded loss function; Regression; Least squares loss function; Support vector regression (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723003089
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:310:y:2023:i:3:p:1325-1339
DOI: 10.1016/j.ejor.2023.04.025
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().