Online portfolio selection with state-dependent price estimators and transaction costs
Sini Guo,
Jia-Wen Gu,
Christopher H. Fok and
Wai-Ki Ching
European Journal of Operational Research, 2023, vol. 311, issue 1, 333-353
Abstract:
Artificial intelligence (A.I.) techniques have been applied to the online portfolio selection (OLPS) problem, a topic attracting increasing attention. In brief, OLPS is the task of sequentially updating the investment portfolio with the continuous update of assets’ prices. In this paper, we study the OLPS problem with transaction costs. First, we study the exact computation of the transaction cost and derive related constant upper and lower bounds, which allow us to take the transaction costs into account when deriving an optimal portfolio in each investment period. Second, considering that assets’ market states switch from time to time and their prices exhibit different behaviors in different market states, we propose the state-dependent exponential moving average method (SEMA), which can accurately predict assets’ returns based on historical return data and assets’ market states. Third, we construct the net profit maximization model (NPM) and the net profit maximization model with a risk parity constraint (NPMRP). Finally, we combine these three parts to build the state-dependent online portfolio selection algorithm (SOPS) for solving the OLPS problem with transaction cost. Our empirical results reveal that the proposed SOPS algorithm can outperform many state-of-the-art OLPS algorithms.
Keywords: Online portfolio selection; Transaction remainder factor; Transaction costs; Risk parity; Market states (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723003454
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:311:y:2023:i:1:p:333-353
DOI: 10.1016/j.ejor.2023.05.001
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().