EconPapers    
Economics at your fingertips  
 

Modelling credit card exposure at default using vine copula quantile regression

Suttisak Wattanawongwan, Christophe Mues, Ramin Okhrati, Taufiq Choudhry and Mee Chi So

European Journal of Operational Research, 2023, vol. 311, issue 1, 387-399

Abstract: To model the Exposure At Default (EAD) of revolving credit facilities, such as credit cards, most of the research thus far has employed point estimation approaches, focusing on the central tendency of the outcomes. However, such approaches may have difficulties coping with the high variance of EAD data and its non-normal empirical distribution, whilst information on extreme quantiles, rather than the mean, can have greater implications in practice. Also, many of the input variables used in EAD models are strongly correlated, which further complicates model building. This paper, therefore, proposes vine copula-based quantile regression, an interval estimation approach, to model the entire distribution of EAD and predict its conditional mean and quantiles. This methodology addresses several drawbacks of classical quantile regression, including quantile crossing and multicollinearity, and it allows the multi-dimensional dependencies between all variables in any EAD dataset to be modelled by a suitable series of (either parametric or non-parametric) pair-copulas. Using a large dataset of credit card accounts, our empirical analysis shows that the proposed non-parametric model provides better point and interval estimates for EAD, and more accurately reflects its actual distribution, compared to a selection of other models.

Keywords: Risk analysis; Credit cards; Exposure at default; Quantile regression; Vine copulas (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723003806
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:311:y:2023:i:1:p:387-399

DOI: 10.1016/j.ejor.2023.05.016

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:311:y:2023:i:1:p:387-399