An exact cutting plane method for the Euclidean max-sum diversity problem
Sandy Spiers,
Hoa T. Bui and
Ryan Loxton
European Journal of Operational Research, 2023, vol. 311, issue 2, 444-454
Abstract:
This paper aims to answer an open question recently posed in the literature, that is to find a fast exact method for solving the max-sum diversity problem, a nonconcave quadratic binary maximization problem. We show that, for Euclidean max-sum diversity problems (EMSDP), the distance matrix defining the quadratic term is always conditionally negative definite. This interesting property ensures that the cutting plane method is exact for (EMSDP), even in the absence of concavity. As such, the cutting plane method, which is primarily designed for concave maximisation problems, converges to the optimal solution of (EMDSP). The method was evaluated on several standard benchmark test sets, where it was shown to outperform other exact solution methods for (EMSDP), and is capable of solving two-coordinate problems of up to eighty-five thousand variables.
Keywords: Combinatorial optimization; Maximum diversity; Cutting planes; Euclidean distance; Branch and cut (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172300379X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:311:y:2023:i:2:p:444-454
DOI: 10.1016/j.ejor.2023.05.014
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().