Distortion risk measure under parametric ambiguity
Hui Shao and
Zhe George Zhang
European Journal of Operational Research, 2023, vol. 311, issue 3, 1159-1172
Abstract:
This study develops closed-form solutions for distortion risk measures (DRM) in extreme cases by utilizing the first two moments and the symmetry of underlying distributions. The resultant extreme-case distributions, encompassing the worst- and best-case distributions, are identified by the envelopes of the distortion functions. The findings of this study extend previous research on worst-case risk measures such as worst-case VaR, worst-case CVaR, worst-case RVaR, and worst-case spectral risk measure, by presenting a unified framework. Furthermore, the compact solutions enhance tractability in optimization problems involving these risk measures, particularly when the true underlying distribution is unknown, and the first two moments are uncertain. The application of the extreme-case DRMs is illustrated with real data sets through numerical examples.
Keywords: Risk analysis; Extreme-case risk measure; Distortion function; Moment uncertainty; Robust optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723003880
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:311:y:2023:i:3:p:1159-1172
DOI: 10.1016/j.ejor.2023.05.025
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().