Adjustable robust optimization with objective uncertainty
Boris Detienne,
Henri Lefebvre,
Enrico Malaguti and
Michele Monaci
European Journal of Operational Research, 2024, vol. 312, issue 1, 373-384
Abstract:
In this work, we study optimization problems where some cost parameters are not known at decision time and the decision flow is modeled as a two-stage process within a robust optimization setting. We address general problems in which all constraints (including those linking the first and the second stages) are defined by convex functions and involve mixed-integer variables, thus extending the existing literature to a much wider class of problems. We show how these problems can be reformulated using Fenchel duality, allowing to derive an enumerative exact algorithm, for which we prove asymptotic convergence in the general case, and finite convergence for cases where the first-stage variables are all integer.
Keywords: Uncertainty modelling; Two-stage robust optimization; Reformulation; Fenchel duality; Branch-and-price; Computational experiments (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723005143
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:312:y:2024:i:1:p:373-384
DOI: 10.1016/j.ejor.2023.06.042
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().