Lower and upper bounding procedures for the bin packing problem with concave loading cost
Mohamed Haouari and
Mariem Mhiri
European Journal of Operational Research, 2024, vol. 312, issue 1, 56-69
Abstract:
We address the one-dimensional bin packing problem with concave loading cost (BPPC), which commonly arises in less-than-truckload shipping services. Our contribution is twofold. First, we propose three lower bounds for this problem. The first one is the optimal solution of the continuous relaxation of the problem for which a closed form is proposed. The second one allows the splitting of items but not the fractioning of bins. The third one is based on a large-scale set partitioning formulation of the problem. In order to circumvent the challenges posed by the non-linearity of the objective function coefficients, we considered the inner-approximation of the concave load cost and derived a relaxed formulation that is solved by column generation. In addition, we propose two subset-sum-based heuristics. The first one is a constructive heuristic while the second one is a local search heuristic that iteratively attempts to improve the current solution by selecting pairs of bins and solving the corresponding subset sum-problem. We show that the worst-case performance of any BPPC heuristic and any concave loading cost function is bounded by 2. We present the results of an extensive computational study that was carried out on large set of benchmark instances. This study provides empirical evidence that the column generation-based lower bound and the local search heuristic consistently exhibit remarkable performance.
Keywords: Combinatorial optimization; Packing; Lower bounds; Column generation; Heuristics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723004800
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:312:y:2024:i:1:p:56-69
DOI: 10.1016/j.ejor.2023.06.028
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().