Solving the unit-load pre-marshalling problem in block stacking storage systems with multiple access directions
Jakob Pfrommer,
Anne Meyer and
Kevin Tierney
European Journal of Operational Research, 2024, vol. 313, issue 3, 1054-1071
Abstract:
Block stacking storage systems are highly adaptable warehouse systems with low investment costs. With multiple, deep lanes they can achieve high storage densities, but accessing some unit loads can be time-consuming. The unit-load pre-marshalling problem sorts the unit loads in a block stacking storage system in off-peak time periods to prepare for upcoming orders. The goal is to find a minimum number of unit-load moves needed to sequence a storage bay in ascending order based on the retrieval priority group of each unit load. In this paper, we present two solution approaches for determining the minimum number of unit-load moves. We show that for storage bays with one access direction, it is possible to adapt existing, exact tree search procedures and lower bound heuristics from the container pre-marshalling problem. For multiple access directions, we develop a novel, two-step solution approach based on a network flow model and an A* algorithm with an adapted lower bound that is applicable for all possible access direction combinations. We further analyze the performance of the presented solutions in computational experiments for randomly generated problem instances and show that multiple access directions greatly reduce both the total access time of unit loads and the required sorting effort.
Keywords: Logistics; Reshuffling; Block stacking warehouse; Tree search; Autonomous mobile robots (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723006744
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:313:y:2024:i:3:p:1054-1071
DOI: 10.1016/j.ejor.2023.08.044
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().