On the paper “Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem”
L.F. Bueno,
G. Haeser and
O. Kolossoski
European Journal of Operational Research, 2024, vol. 313, issue 3, 1217-1222
Abstract:
In the paper Torrealba et al. (2021) an augmented Lagrangian algorithm was proposed for resource allocation problems with the intriguing characteristic that instead of solving the box-constrained augmented Lagrangian subproblem, they propose projecting the solution of the unconstrained subproblem onto such box. A global convergence result for the quadratic case was provided, however, this is somewhat counterintuitive, as in usual augmented Lagrangian theory, this strategy can fail in solving the augmented Lagrangian subproblems. In this note we investigate further this algorithm and we show that the proposed method may indeed fail when the Hessian of the quadratic is not a multiple of the identity. In the paper, it is not clear enough that two different projections are being used: one for obtaining their convergence results and other in their implementation. However, despite the lack of theoretical convergence, their strategy works remarkably well in some classes of problems; thus, we propose a hybrid method which uses their idea as a starting point heuristics, switching to a standard augmented Lagrangian method under certain conditions. Our contribution consists in presenting an efficient way of determining when the heuristics is failing to improve the KKT residual of the problem, suggesting that the heuristic procedure should be abandoned. Numerical results are provided showing that this strategy is successful in accelerating the standard method.
Keywords: Nonlinear programming; Resource allocation problem; Augmented lagrangian method (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037722172300824X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:313:y:2024:i:3:p:1217-1222
DOI: 10.1016/j.ejor.2023.11.001
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().