Container port truck dispatching optimization using Real2Sim based deep reinforcement learning
Jiahuan Jin,
Tianxiang Cui,
Ruibin Bai and
Rong Qu
European Journal of Operational Research, 2024, vol. 315, issue 1, 161-175
Abstract:
In marine container terminals, truck dispatching optimization is often considered as the primary focus as it provides crucial synergy between the sea-side operations and yard-side activities and hence can greatly affect the terminal throughput and quay crane utilization. However, many existing studies rely on strong assumptions that often overlook the uncertainties and dynamics innate to real-life applications. In this work, we propose a dynamic truck dispatching system for container ports equipped with the latest IoT technologies. The system is comprised of Real2Sim simulation and a truck dispatch agent, trained through a spatial-attention based deep reinforcement learning module, supported by an expert network. The proposed Real2Sim framework has the ability to model the non-linear complexities and non-deterministic events while our attention-aware deep reinforcement learning module is capable of making full use of both historical and real-time port data to learn a high-quality truck dispatching policy under uncertainties. Extensive experiments show our proposed method has good generalization and achieves the state-of-the-art results on the problems derived from real-life data of a large international port.
Keywords: Transportation; Deep reinforcement learning; Vehicle routing; Digital port; Uncertainties (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723008792
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:315:y:2024:i:1:p:161-175
DOI: 10.1016/j.ejor.2023.11.038
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().