When is the next order? Nowcasting channel inventories with Point-of-Sales data to predict the timing of retail orders
Tim Schlaich and
Kai Hoberg
European Journal of Operational Research, 2024, vol. 315, issue 1, 35-49
Abstract:
Slow-moving goods are common in many retail settings and occupy a vast part of retail shelves. Since stores sell these products irregularly and in small quantities, the replenishing distribution center may only place batched orders with manufacturers every few weeks. While order quantities are often fixed, the challenge for manufacturers facing such intermittent demand is to forecast the order timing. In this paper, we explore the value of Point-of-Sales (PoS) data to improve a food manufacturer’s order timing forecast for slow-moving goods. We propose an inventory modeling approach that uses the last order, PoS data from retail stores, and the expected lead time demand to estimate the retailer’s channel inventory. With this dynamic estimate, we can ‘nowcast’ the retailer’s inventory and predict his next order. To illustrate our methodology, we first conduct an experimental simulation and compare our results to a Croston variant and a moving average model. Next, we validate our approach with empirical data from a small German food manufacturer that serves a grocery retailer with a central distribution center and 53 hypermarkets. We find that, on average, our approach improves the accuracy of order-timing predictions by 10–20 percent points. We overcome a shrinkage-induced bias by incorporating an inventory correction factor. Our approach describes a new way of utilizing PoS data in multi-layered distribution networks and can complement established forecasting methods such as Croston. Particular applications arise when the order history is short (e.g., product launch) or represents a bad predictor for future demand (e.g., during COVID-19).
Keywords: Forecasting; Point-of-Sales; Information sharing; Intermittent demand; Food retailing (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723008147
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:315:y:2024:i:1:p:35-49
DOI: 10.1016/j.ejor.2023.10.038
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().