EconPapers    
Economics at your fingertips  
 

Accuracy of Deterministic Nonparametric Frontier Models with Undesirable Outputs

Derek D. Wang and Yaoyao Ren

European Journal of Operational Research, 2024, vol. 315, issue 2, 596-612

Abstract: The accuracy of deterministic nonparametric frontier models with desirable outputs has been extensively investigated. However, research on the models’ accuracy in the presence of undesirable outputs is almost nonexistent, though applications in this regard are abundant. This paper evaluates the accuracy of seven representative deterministic nonparametric frontier models in dealing with undesirable outputs. The experimental design employs Monte Carlo simulation and translog production functions across a wide range of settings. We find that the integration of undesirable outputs lowers model accuracy. All seven models display robust performance under different returns-to-scale assumptions. Outputs correlation has a positive effect on model performance. Using a large sample can improve the models’ accuracy except for the range-adjusted measure model. The models’ accuracy is most sensitive to noise at low noise levels. Endogeneity has a negative effect on the models’ accuracy, but depreciation of accuracy is minor at low to medium endogeneity levels. Heteroskedasticity leads to improved performance. Overall, the experimental results support the usage of the by-production approach and strongly disfavor the range-adjusted measure approach and the hyperbolic approach. The directional distance function method has an edge for large samples, if the objective is to identify top and bottom units. Another approach, treating undesirable outputs as inputs, is dominated by other methods. The ranking of the methods is generally robust to the variations of returns-to-scale, sample size, noise, outputs correlation, endogeneity, and heteroskedasticity. We also show that the slacks-based measure under the by-production framework has better performance than the Färe–Grosskopf–Lovell index proposed in literature.

Keywords: Data envelopment analysis; Efficiency analysis; Frontier models; Monte Carlo experiments; Simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221723009499
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:315:y:2024:i:2:p:596-612

DOI: 10.1016/j.ejor.2023.12.016

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:315:y:2024:i:2:p:596-612