EconPapers    
Economics at your fingertips  
 

Counterfactual analysis and target setting in benchmarking

Peter Bogetoft, Jasone Ramírez-Ayerbe and Dolores Romero Morales

European Journal of Operational Research, 2024, vol. 315, issue 3, 1083-1095

Abstract: Data Envelopment Analysis (DEA) allows us to capture the complex relationship between multiple inputs and outputs in firms and organizations. Unfortunately, managers may find it hard to understand a DEA model and this may lead to mistrust in the analyses and to difficulties in deriving actionable information from the model. In this paper, we propose to use the ideas of target setting in DEA and of counterfactual analysis in Machine Learning to overcome these problems. We define DEA counterfactuals or targets as alternative combinations of inputs and outputs that are close to the original inputs and outputs of the firm and lead to desired improvements in its performance. We formulate the problem of finding counterfactuals as a bilevel optimization model. For a rich class of cost functions, reflecting the effort an inefficient firm will need to spend to change to its counterfactual, finding counterfactual explanations boils down to solving Mixed Integer Convex Quadratic Problems with linear constraints. We illustrate our approach using both a small numerical example and a real-world dataset on banking branches.

Keywords: Data envelopment analysis; Benchmarking; DEA targets; Counterfactual explanations; Bilevel optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724000067
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:315:y:2024:i:3:p:1083-1095

DOI: 10.1016/j.ejor.2024.01.005

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:315:y:2024:i:3:p:1083-1095