The wildfire suppression problem with multiple types of resources
Mualla Gonca Avci,
Mustafa Avci,
Maria Battarra and
Güneş Erdoğan
European Journal of Operational Research, 2024, vol. 316, issue 2, 488-502
Abstract:
The frequency and impact of wildfires have considerably increased in the past decade, due to the extreme weather conditions as well as the increased population density. The aim of this study is to introduce, model, and solve a wildfire suppression problem that involves multiple types of fire suppression resources and their operational characteristics. Two integer programming (IP) formulations, a basic IP and its reformulation with combinatorial Benders’ cuts, are presented. The performances of the proposed formulations are evaluated on a set of randomly generated instances. The results indicate that the proposed formulations are able to obtain high quality upper and lower bounds. Extensive numerical experiments are performed to analyse the effects of several operational constraints on the computational performance of the models. A case study arising in Yatağan district of Muğla province of Türkiye is presented.
Keywords: OR in disaster relief; Wildfire suppression; Mathematical modelling; Combinatorial Benders’ cuts (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724001796
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:316:y:2024:i:2:p:488-502
DOI: 10.1016/j.ejor.2024.03.005
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().