A general computational framework and a hybrid algorithm for large-scale data envelopment analysis
Junfei Chu,
Yuting Rui,
Dariush Khezrimotlagh and
Joe Zhu
European Journal of Operational Research, 2024, vol. 316, issue 2, 639-650
Abstract:
This paper develops a new algorithm to accelerate DEA computation for large-scale datasets. We first provide a general DEA computation framework that employs a simple small-size linear program (LP). This LP can obtain all the critical outcomes simultaneously for accelerating DEA computation in the literature. Based on the general computational framework, we propose a new algorithm (called hybrid algorithm) that uses a hybrid strategy of density-increasing mechanism and reference set selection. The hybrid algorithm continuously solves the simple small-size LP to either identify an extreme efficient DMU or directly obtain the efficiency of the DMU under evaluation. To ensure the LPs solved are always in a small size, the hybrid algorithm selects the data of only a small subsample of the identified extreme efficient DMUs into the LPs’ coefficient matrix each time when a DMU is evaluated. A new subsample selection technique is also suggested. The numerical experiment shows that the new technique can select subsample of extreme efficient DMUs more effectively compared with the previous subsample selection technique. Consequently, the hybrid algorithm solves only one or a minuscule number of small-size LPs to obtain each DMU’s efficiency. Therefore, the hybrid algorithm ensures that the size and number of LPs solved for each DMU are small. The computational experiment on large datasets shows that the hybrid algorithm performs more than an order of magnitude faster than the existing representative algorithms.
Keywords: Data envelopment analysis; Linear programming; Reference set selection; Large-scale data (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724000493
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:316:y:2024:i:2:p:639-650
DOI: 10.1016/j.ejor.2024.01.030
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().