Problem-based scenario generation by decomposing output distributions
Benjamin Narum,
Jamie Fairbrother and
Stein Wallace
European Journal of Operational Research, 2024, vol. 318, issue 1, 154-166
Abstract:
Scenario generation is required for most applications of stochastic programming to evaluate the expected effect of decisions made under uncertainty. We propose a novel and effective problem-based scenario generation method for two-stage stochastic programming that is agnostic to the specific stochastic program and kind of distribution. Our contribution lies in studying how an output distribution may change across decisions and exploit this for scenario generation. From a collection of output distributions, we find a few components that largely compose these, and such components are used directly for scenario generation. Computationally, the procedure relies on evaluating the recourse function over a large discrete distribution across a set of candidate decisions, while the scenario set itself is found using standard and efficient linear algebra algorithms that scale well. The method’s effectiveness is demonstrated on four case study problems from typical applications of stochastic programming to show it is more effective than its distribution-based alternatives. Due to its generality, the method is especially well suited to address scenario generation for distributions that are particularly challenging.
Keywords: Stochastic programming; Problem-based scenario generation; Singular value decomposition (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724002650
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:318:y:2024:i:1:p:154-166
DOI: 10.1016/j.ejor.2024.04.006
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().