EconPapers    
Economics at your fingertips  
 

Rank-1 transition uncertainties in constrained Markov decision processes

V Varagapriya, Vikas Vikram Singh and Abdel Lisser

European Journal of Operational Research, 2024, vol. 318, issue 1, 167-178

Abstract: We consider an infinite-horizon discounted constrained Markov decision process (CMDP) with uncertain transition probabilities. We assume that the uncertainty in transition probabilities has a rank-1 matrix structure and the underlying uncertain parameters belong to a polytope. We formulate the uncertain CMDP problem using a robust optimization framework. To derive reformulation of the robust CMDP problem, we restrict to the class of stationary policies and show that it is equivalent to a bilinear programming problem. We provide a simple example where a Markov policy performs better than the optimal policy in the class of stationary policies, implying that, unlike in classical CMDP problem, an optimal policy of the robust CMDP problem need not be present in the class of stationary policies. For the case of a single uncertain parameter, we propose sufficient conditions under which an optimal policy of the restricted robust CMDP problem is unaffected by uncertainty. The numerical experiments are performed on randomly generated instances of a machine replacement problem and a well-known class of problems called Garnets.

Keywords: Robust optimization; Constrained Markov decision process; Bilinear programming problem; Machine replacement problem (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724003047
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:318:y:2024:i:1:p:167-178

DOI: 10.1016/j.ejor.2024.04.023

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:318:y:2024:i:1:p:167-178