Rank-1 transition uncertainties in constrained Markov decision processes
V Varagapriya,
Vikas Vikram Singh and
Abdel Lisser
European Journal of Operational Research, 2024, vol. 318, issue 1, 167-178
Abstract:
We consider an infinite-horizon discounted constrained Markov decision process (CMDP) with uncertain transition probabilities. We assume that the uncertainty in transition probabilities has a rank-1 matrix structure and the underlying uncertain parameters belong to a polytope. We formulate the uncertain CMDP problem using a robust optimization framework. To derive reformulation of the robust CMDP problem, we restrict to the class of stationary policies and show that it is equivalent to a bilinear programming problem. We provide a simple example where a Markov policy performs better than the optimal policy in the class of stationary policies, implying that, unlike in classical CMDP problem, an optimal policy of the robust CMDP problem need not be present in the class of stationary policies. For the case of a single uncertain parameter, we propose sufficient conditions under which an optimal policy of the restricted robust CMDP problem is unaffected by uncertainty. The numerical experiments are performed on randomly generated instances of a machine replacement problem and a well-known class of problems called Garnets.
Keywords: Robust optimization; Constrained Markov decision process; Bilinear programming problem; Machine replacement problem (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724003047
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:318:y:2024:i:1:p:167-178
DOI: 10.1016/j.ejor.2024.04.023
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().