EconPapers    
Economics at your fingertips  
 

A learning-based granular variable neighborhood search for a multi-period election logistics problem with time-dependent profits

Masoud Shahmanzari and Renata Mansini

European Journal of Operational Research, 2024, vol. 319, issue 1, 135-152

Abstract: Planning the election campaign for leaders of a political party is a complex problem. The party representatives, running mates, and campaign managers have to design an efficient routing and scheduling plan to visit multiple locations while respecting time and budget constraints. Given the limited time of election campaigns in most countries, every minute should be used effectively, and there is very little room for error. In this paper, we formalize this problem as the multiple Roaming Salesman Problem (mRSP), a new variant of the recently introduced Roaming Salesman Problem (RSP), where a predefined number of political representatives visit a set of cities during a planning horizon to maximize collected rewards, subject to budget and time constraints. Cities can be visited more than once and associated rewards are time-dependent (increasing over time) according to the day of the visit and the recency of previous visits. We develop a compact Mixed Integer Linear Programming (MILP) formulation complemented with effective valid inequalities. Since commercial solvers can obtain optimal solutions only for small-sized instances, we develop a Learning-based Granular Variable Neighborhood Search and demonstrate its capability of providing high-quality solutions in short CPU times on real-world instances. The adaptive nature of our algorithm refers to its ability to dynamically adjust the neighborhood structure based on the progress of the search. Our algorithm generates the best-known results for many instances.

Keywords: Election logistics; Multi-period routing; Multiple roaming salesman problem; Time-dependent profits; Adaptive variable neighborhood search (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724004545
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:319:y:2024:i:1:p:135-152

DOI: 10.1016/j.ejor.2024.06.009

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:319:y:2024:i:1:p:135-152