EconPapers    
Economics at your fingertips  
 

Mixed-model sequencing with stochastic failures: A case study for automobile industry

I. Ozan Yilmazlar, Mary E. Kurz and Hamed Rahimian

European Journal of Operational Research, 2024, vol. 319, issue 1, 206-221

Abstract: In the automotive industry, the sequence of vehicles to be produced is determined ahead of the production day. However, there are some vehicles, failed vehicles, that cannot be produced due to some reasons such as material shortage or paint failure. These vehicles are pulled out of the sequence, and the vehicles in the succeeding positions are moved forward, potentially resulting in challenges for logistics or other scheduling concerns. This paper proposes a two-stage stochastic program for the mixed-model sequencing (MMS) problem with stochastic product failures, and provides improvements to the second-stage problem. To tackle the exponential number of scenarios, we employ the sample average approximation approach and two solution methodologies. On one hand, we develop an L-shaped decomposition-based algorithm, where the computational experiments show its superiority over solving the extensive equivalent formulation with an off-the-shelf solver. Moreover, we provide a tabu search algorithm in addition to a greedy heuristic to tackle case study instances inspired by our car manufacturer partner. Numerical experiments show that the proposed solution methodologies generate high-quality solutions by utilizing a sample of scenarios. Particularly, a robust sequence that is generated by considering car failures can decrease the expected work overload by more than 20% for both small- and large-sized instances.

Keywords: Stochastic programming; Mixed-model sequencing; Branch-and-Benders-cut; Heuristics; Tabu search (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724004673
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:319:y:2024:i:1:p:206-221

DOI: 10.1016/j.ejor.2024.06.019

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:319:y:2024:i:1:p:206-221