EconPapers    
Economics at your fingertips  
 

Accelerated Double-Sketching Subspace Newton

Jun Shang, Haishan Ye and Xiangyu Chang

European Journal of Operational Research, 2024, vol. 319, issue 2, 484-493

Abstract: This paper proposes a second-order stochastic algorithm called Accelerated Double-Sketching Subspace Newton (ADSSN) to solve large-scale optimization problems with high dimensional feature spaces and substantial sample sizes. The proposed ADSSN has two computational superiority. First, ADSSN achieves a fast local convergence rate by exploiting Nesterov’s acceleration technique. Second, by taking full advantage of the double sketching strategy, ADSSN provides a lower computational cost for each iteration than competitive approaches. Moreover, these advantages hold for actually all sketching techniques, which enables practitioners to design custom sketching methods for specific applications. Finally, numerical experiments are carried out to demonstrate the efficiency of ADSSN compared with accelerated gradient descent and two single sketching counterparts.

Keywords: Large-scale optimization; Subspace Newton algorithm; Nesterov’s acceleration; Sketching methods (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724002613
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:319:y:2024:i:2:p:484-493

DOI: 10.1016/j.ejor.2024.04.002

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:319:y:2024:i:2:p:484-493