EconPapers    
Economics at your fingertips  
 

An effective subgradient algorithm via Mifflin’s line search for nonsmooth nonconvex multiobjective optimization

Morteza Maleknia and Majid Soleimani-damaneh

European Journal of Operational Research, 2024, vol. 319, issue 2, 505-516

Abstract: We propose a descent subgradient algorithm for unconstrained nonsmooth nonconvex multiobjective optimization problems. To find a descent direction, we present an iterative process that efficiently approximates the ɛ-subdifferential of each objective function. To this end, we develop a new variant of Mifflin’s line search in which the subgradients are arbitrary and its finite convergence is proved under a semismooth assumption. To reduce the number of subgradient evaluations, we employ a backtracking line search that identifies the objectives requiring an improvement in the current approximation of the ɛ-subdifferential. Meanwhile, for the remaining objectives, new subgradients are not computed. Unlike bundle-type methods, the proposed approach can handle nonconvexity without the need for algorithmic adjustments. Moreover, the quadratic subproblems have a simple structure, and hence the method is easy to implement. We analyze the global convergence of the proposed method and prove that any accumulation point of the generated sequence satisfies a necessary Pareto optimality condition. Furthermore, our convergence analysis addresses a theoretical challenge in a recently developed subgradient method. Through numerical experiments, we observe the practical capability of the proposed method and evaluate its efficiency when applied to a diverse range of nonsmooth test problems.

Keywords: Multiple objective programming; Nonlinear optimization; Nonsmooth optimization; Nonconvex programming; Subgradient (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724005605
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:319:y:2024:i:2:p:505-516

DOI: 10.1016/j.ejor.2024.07.019

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:319:y:2024:i:2:p:505-516