EconPapers    
Economics at your fingertips  
 

Optimal day-ahead offering strategy for large producers based on market price response learning

Antonio Alcántara and Carlos Ruiz

European Journal of Operational Research, 2024, vol. 319, issue 3, 891-907

Abstract: In day-ahead electricity markets based on uniform marginal pricing, small variations in the offering and bidding curves may substantially modify the resulting market outcomes. In this work, we deal with the problem of finding the optimal offering curve for a risk-averse profit-maximizing generating company (GENCO) in a data-driven context. In particular, a large GENCO’s market share may imply that its offering strategy can alter the marginal price formation, which can be used to increase profit. We tackle this problem from a novel perspective. First, we propose an optimization-based methodology to summarize each GENCO’s step-wise supply curves into a subset of representative price-energy blocks. Then, the relationship between the resulting market price and the energy block offering prices is modeled through a probabilistic forecasting tool: a Distributional Neural Network, which also allows us to generate stochastic scenarios for the sensibility of the market towards the GENCO strategy via a set of linear constraints. Finally, this predictive model is embedded in the stochastic optimization model employing a constraint learning approach. Results show how allowing the GENCO to deviate from its true marginal costs renders significant changes in its profits and the marginal price of the market. Additionally, these results have also been tested in an out-of-sample validation setting, showing how this optimal offering strategy can effective in a real-world market context.

Keywords: OR in energy; Constraint learning; Data-driven optimization; Electricity market; Optimal pricing strategy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724005186
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:319:y:2024:i:3:p:891-907

DOI: 10.1016/j.ejor.2024.06.038

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:319:y:2024:i:3:p:891-907