Bilevel optimization approach for fuel treatment planning
Tomás Lagos,
Junyeong Choi,
Brittany Segundo,
Jianbang Gan,
Lewis Ntaimo and
Oleg A. Prokopyev
European Journal of Operational Research, 2025, vol. 320, issue 1, 205-218
Abstract:
Various fuel treatment practices involve removing all or some of the vegetation (fuel) from a landscape to reduce the potential for fires and their severity. Fuel treatments form the first line of defense against large-scale wildfires. In this study, we formulate and solve a bilevel integer programming model, where the fuel treatment planner (modeled as the leader) determines appropriate locations and types of treatments to minimize expected losses from wildfires. The follower (i.e., the lower-level decision-maker) corresponds to nature, which is adversarial to the leader and designs a wildfire attack (i.e., locations and time periods, where and when, respectively, wildfires occur) to disrupt the leader’s objective function, e.g., the total expected area burnt. Both levels in the model involve integrality restrictions for decision variables; hence, we explore the model’s difficulty from the computational complexity perspective. Then, we design specialized solution methods for general and some special cases. We perform experiments with semi-synthetic and real-life instances to illustrate the performance of our approaches. We also explore numerically the fundamental differences in the structural properties of solutions arising from bilevel model and its single-level counterpart. These disparities encompass factors like the types of treatments applied and the choice of treated areas. Additionally, we conduct various types of sensitivity analysis on the performance of the obtained policies and illustrate the value of the bilevel solutions.
Keywords: Bilevel optimization; Mixed-integer programming; Cutting plane; Wildfire prevention; Global optimization (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724005551
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:320:y:2025:i:1:p:205-218
DOI: 10.1016/j.ejor.2024.07.014
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().