Decision-focused neural adaptive search and diving for optimizing mining complexes
Yassine Yaakoubi and
Roussos Dimitrakopoulos
European Journal of Operational Research, 2025, vol. 320, issue 3, 699-719
Abstract:
Optimizing industrial mining complexes, from extraction to end-product delivery, presents a significant challenge due to non-linear aspects and uncertainties inherent in mining operations. The two-stage stochastic integer program for optimizing mining complexes under joint supply and demand uncertainties leads to a formulation with tens of millions of variables and non-linear constraints, thereby challenging the computational limits of state-of-the-art solvers. To address this complexity, a novel solution methodology is proposed, integrating context-aware machine learning and optimization for decision-making under uncertainty. This methodology comprises three components: (i) a hyper-heuristic that optimizes the dynamics of mining complexes, modeled as a graph structure, (ii) a neural diving policy that efficiently performs dives into the primal heuristic selection tree, and (iii) a neural adaptive search policy that learns a block sampling function to guide low-level heuristics and restrict the search space. The proposed neural adaptive search policy introduces the first soft (heuristic) branching strategy in mining literature, adapting the learning-to-branch framework to an industrial context. Deployed in an online fashion, the proposed hybrid methodology is shown to optimize some of the most complex case studies, accounting for varying degrees of uncertainty modeling complexity. Theoretical analyses and computational experiments validate the components’ efficacy, adaptability, and robustness, showing substantial reductions in primal suboptimality and decreased execution times, with improved and more robust solutions that yield higher net present values of up to 40%. While primarily grounded in mining, the methodology shows potential for enabling smart, robust decision-making under uncertainty.
Keywords: Large scale optimization; Stochastic programming; Heuristics; Machine learning; OR in natural resources (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724005654
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:320:y:2025:i:3:p:699-719
DOI: 10.1016/j.ejor.2024.07.024
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().